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Abstract

The new exact solutions of the classical Fourier’s problem of heat conduction in a thin ring with a moving periodical
J-source of energy are obtained. Such kind of solutions of heat conduction equation is not yet studied in the literature.
It is shown that they are typical for the heating of rotating hollow bodies and can be used for quantitative description of
heat transfer through the moving caterpillar track. Under some conditions the “integer’” solution of heat conduction
equation can be approximated with a high accuracy by means of a strict succession of positive whole numbers. © 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

A moving caterpillar track is used widely in en-
gineering. Our strictly practical interest in this field was
connected with the investigation of heat transfer
through the moving caterpillar track which served as an
element of the experimental technique for fabrication of
thin solid films. In a first approximation this element can
be considered as a system of tubes rolled between two
planes heated by different sources of energy. The inves-
tigation shows that even the simplest variant of the
problem (heating of a single thin-walled tube trundled
on a plane with a constant surface density of a heat flow
q) has specific stepped solutions that were not yet met in
other problems of heat conduction and diffusion. The
goal of this note is to demonstrate the main features of
these solutions and, more generally, give the possibility
of quantitative description of heat transfer in such kind
of systems.
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2. Model

We suppose the length of a tube, radius of a middle
wall surface and the thickness of a tube wall are such
that the inequality / > R > Ar is valid, so we can ne-
glect boundary effects near tube butt-ends and the heat
flow in radial and axial directions. The motion of the
tube can be described by the constant linear speed of a
tube axis u# and the angular speed of its rotation @ which
are connected by the equation u = wR. By passing to the
rotating polar system of coordinates the mathematical
model for the description of a temperature field in a
cross-section of a tube can be obtained in the following
form:
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Nomenclature

thermal diffusivity

heat capacity at constant pressure

length

thermal power of a rotating d-source of energy
radius of a middle wall surface

temperature

N xR~ o .

t time

linear speed

heat transfer coefficient
thickness of a tube wall
angular coordinate
density of a material
angular speed of rotation

>R =
g

SIS

2n-periodical Dirac d-function can be written as a sum
of usual o-functions:
02 — t) = Zé((p+2nk+n7w1). (5)
k=0

The case of a ring heated by a fixed concentrated
source of energy was considered by Fourier [1]. Carslaw
and Jaeger note that historically it was the first problem
of the analytical theory of heat conduction in solids
(Fourier’s problem of a ring [2, Chapter 4.15]). The case
of a periodical circular movement of J-source along a
ring is not yet studied in the literature.

Turning to the dimensionless variables 7= wt,
v = cpAroT /q and using the Laplace transform

y= / exp(—pr)u(p, 7)de,

one can obtain the ordinary differential equation:

L exp(=p(¢ + 7))
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where B = a/wR?, h* = —p/B.
The exact solution of this equation can be written as:

B 1 sin(hgp)  p cos(hp)
YT T+ 1) (sin(hn) i sin(hn)

2 exp(=p(¢ + m)) >
1 —exp(—2np) )’

(8)

All terms of this solution have simple poles of order 1
at p = 1/B and poles of order 2 at p = 0. The first and
second terms have simple poles at p = —Bk?, where
k=1,2,.... The residues for these two terms can be
found by the standard way and lead to originals of the
usual “diffusional” type. In order to find the third term
original it is convenient to use the tables of Laplace
transform [3] for: 1/(p—1/B) and 1/(p(1 —exp(—27p))).
Using then the convolution and translation theorems we
obtain the final solution of the problem (1)-(4) in orig-
inals:
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1 — exp(—2n/B)

Here and elsewhere [z] mean “the whole part of a
number z” — the greatest integer not exceeding the
number z, braces {z} mean “the fractional part of the
number z” and z = [z] + {z}. The term in the form of
infinite series has the usual diffusional type, its limit is
zero if wt — oo and the temperature distribution in a
ring will be determined by two next discrete terms
having the continuous sum. Such kind of terms is not
given in the list of known types of exact solutions of
linear parabolic equation of heat conduction [2, Chapter
2.1]. The exponential term with the periodical “frac-
tional” index (the “periodical” exponent) describes the
temperature variation of a ring point with the coordi-
nate ¢ during the 2z period of time from one contact
with the J-source to another. The integer term numbers
contacts in time and leads to the temperature jumps
caused by the periodical rising of heat flow. The char-
acter of the temperature distribution is connected with
the value of the only dimensionless parameter
B = a/wR* = a/uR binding together a thermal property
of used material, a characteristic size of a ring and a
frequency of J-source rotation. One can treat parameter
B as a dimensionless coefficient of heat diffusivity.

3. Results and discussions

Time dependencies of normalized temperature
v = cpAroT /q in the point ¢ = 0 for different values of B
are shown in Fig. 1. At high values of the dimensionless
thermal diffusivity B >> 1 temperature curves tend to have
the form of a straight line. In this particular case heat
conduction dominates in the system and one can say
about the heating of a moving (without any rotation)
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Fig. 1. Time dependencies of dimensionless temperature in the
ring point ¢ = 0 for various values of dimensionless thermal
diffusivity B.

material point in a “hot” medium. At low values of B < 1
temperature curves have characteristic stepped form and
with each contact dimensionless temperature rises by 1. It
means that heat conduction is negligible and temperature
variations are only connected with direct contacts with a
periodical d-source of energy. Mathematically the form of
temperature curve will be determined for all moments of
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time excepting moments of direct contacts with d-source
by the whole number term

= (10

cpAroT ¢ —B+2n
q - 2n

that can be approximated with a high accuracy by
means of a strict succession of positive whole numbers.
In this case any device with real (limited) detectivity and
time resolution will measure only discrete levels of
temperature. The smaller size and higher accuracy the
device has, the closer data measured to discrete levels
are. Measuring the temperature we can find the number
of ring revolutions and on the contrary the known
number of revolutions allows us to find out the tem-
perature with high accuracy.

At intermediate values of B ~ 1 all terms in (9) are of
the same order and temperature curves consist of a
succession of jointed ““‘periodical” exponents:
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T Cexp(—2n/B) (1)

cpAroT ¢ —B+2n

The analysis of situation under consideration does not
take into account thermal losses into surrounding me-
dium. These losses (into medium under zero tempera-
ture) can be accounted in the mathematical model by
adding the term o7 /cpAr to the right-hand side of Eq.
(1). In this case the problem (1)—(4) will have the fol-
lowing exact solution:
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Fig. 2. Time dependencies of dimensionless temperature in the ring point ¢ = 0 for various values of dimensionless heat transfer

coefficient A4 ((a) thermal diffusivity B = 1, (b) B = 0.001).
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where A =o/cpArm, D= (44B+1)"?, D, =(1+D)/2B,
D_=(1-D)/2B.

At ot — oo first and second terms will be negligibly
small and temperature variation in a fixed point of a ring
will be determined by the sum of two exponents with pe-
riodical fractional indices. Time dependencies of nor-
malized temperature v = cpArwT /g in the point ¢ = 0 for
different values of the dimensionless heat transfer coeffi-
cient 4 and thermal diffusivity B are shown in Fig. 2. At
low A the temperature curves approach the curves built in
Fig. 1 for corresponding values of B. The rise of the heat
transfer coefficient (4 = 0.1) leads to the total lowering of
the temperature level. The intensive heat transfer with
medium (high values of 4 > 1) practically sets the tem-
perature of surrounding medium within a ring excepting
the time moments of the direct contacts with J-source of
energy. As one can see temperature curves in Fig. 2(b)
(B = 0.001) practically compose of straightline sections,
so, in spite of the cooling to medium, these curves have
more “integer” character then ones in Fig. 2(a). The
smaller the heat transfer coefficient is, the more integer
curves are.

Thus, in the note new continuous stepped solutions
of the well-known problem of heat conduction in solids,

Fourier’s problem of a ring heated by the moving con-
centrated source of energy, are obtained. These integer
and fractional solutions are not mathematically the
special case of any other known type of exact solutions
of the linear heat conduction equation and can be used
for the quantitative description of heat transfer pro-
cesses in different systems, for example the moving cat-
erpillar track. As a rule, parabolic equations in the
theory of heat transfer describe dissipative processes
that led to the flattening of initial or boundary discon-
tinuities. The problem discussed above demonstrates the
uncommon opposite situation — formation of abrupt
stepped distributions of temperature at the straightfor-
ward and steady motion of rotating hollow objects even
at a constant speed and constant rate of energy transfer
with medium.
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